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Harmonic analysis is a standard musicological :
tool for understanding many pieces of Western
classical music and making comparisons among
them. Traditionally, this analysis is done on paper
scores, and most past research in machine-
assisted analysis has begun with digital repre-
sentations of them. Human music students are
also taught to hear their musical analyses,
however, in both musical recordings and per-
formances. Our approach attempts to teach ma-
chines to do the same, beginning with a corpus of
recorded Mozart symphonies.
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The audio ﬁles are ﬁrst transformed il’ltO an b PCP distributions (first repeat only), scaled linearly in time. Note the lack of obvious triads.
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